Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 805-830 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A comprehensive detailed chemical kinetic mechanism for methanol oxidation has been developed and validated against multiple experimental data sets. The data are from static-reactor, flow-reactor, shock-tube, and laminar-flame experiments, and cover conditions of temperature from 633-2050 K, pressure from 0.26-20 atm, and equivalence ratio from 0.05-2.6. Methanol oxidation is found to be highly sensitive to the kinetics of the hydroperoxyl radical through a chain-branching reaction sequence involving hydrogen peroxide at low temperatures, and a chain-terminating path at high temperatures. The sensitivity persists at unusually high temperatures due to the fast reaction of CH2OH+O2=CH2O+HO2 compared to CH2OH+M=CH2O+H+M. The branching ratio of CH3OH+OH=CH2OH/CH3O+H2O was found to be a more important parameter under the higher temperature conditions, due to the rate-controlling nature of the branching reaction of the H-atom formed through CH3O thermal decomposition. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 805-830, 1998
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...