Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 22 (1982), S. 1249-1262 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The virial theorem has played an important role in applying quantum mechanics to chemical problems. It has served as one criterion of a satisfactory wave function and its consequences on chemical bonding, molecular structure, and substituent effects have been analyzed extensively. A common method of gaining compliance with the virial theorem is to introduce a “scale” factor which adjusts all distances by a factor η. Optimizing the scale factor through the variational principle produces a wave function satisfying the virial theorem. In the present paper it is shown that when this “scaling” procedure is applied to self-consistent wave functions, the virial theorem can be satisfied, but self-consistency is lost. Scaling generally has a small effect on the total energy, but the effects on the energy components (T, Vne, Vee, Vnn) can be two to three orders of magnitude larger and in the range of tens to hundreds of kcal. Consequently, for applications where the energy components are useful, it is highly desirable to obtain wave functions which satisfy the virial theorem and are self-consistent. In the present paper, a simple, inexpensive extrapolation technique is reported which requires one integral evaluation and two SCF cycles to achieve convergence. Applications to atoms and small molecules are reported.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...