Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 36 (1989), S. 325-339 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We describe an efficient new algorithm which extends the range of feasible shell model calculations. This algorithm is applicable to single shell and multiple shell configurations, where two or more quantum numbers (e.g., L and S) are required to label the states within each shell. The algorithm proceeds by factoring the shell model Hilbert space into a product of subspaces, one for each angular momentum. N-particle wave functions are built up recursively from N - 1 particle wave functions. Three kinds of N - 1- to N-particle coefficients are required to carry out the construction of N-particle electron (or fermion) states from N - 1 particle states. These are (1) coefficients of fractional parentage (CFPs) within a single shell, (2) outerproduct isoscalar factors (OISFs) within a single angular momentum subspace, and (3) innerproduct isoscalar factors (IISFs) which describe how multishell states within the complementary angular momentum subspaces are combined to form totally antisymmetric wave functions. All three types of N - 1- to N-particle coefficients are generated recursively using a single powerful and efficient matrix diagonalization algorithm. Matrix elements of single particle creation and annihilation operators are expressed in terms of single particle CFPs, OISFs, and IISFs. We also describe an efficient algorithm for computing matrix elements of products of creation and anihilation operators by inserting and summing over complete sets of intermediate states. This is the Feynman-like sum over path overlaps procedure. Timing benchmarks are presented comparing the new Drexel University shell model (DUSM) code with a state of the art shell model code.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...