Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 60 (1996), S. 1789-1795 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A theoretical analysis based upon large-scale self-consistent Hartree-Fock calculations at a semiempirical quantum theory level (CNDO/S) is performed to investigate long-range electron transfer in a donor-DNA-acceptor molecule, where the donor and acceptor moieties are tethered to the DNA. The π-stacked base pairs are found to dominate the long-range electronic coupling. Despite the π-electron mediated coupling, the exponential distance decay constant of the electron transfer rate is ∼ 1.2-1.6 Å-1, values typical of electron transfer proteins. The calculated long-range electron transfer rate of the order of 106 s-1 for a metal-to-metal distance of 21 Å is found to be in agreement with kinetic measurements by Meade and Kayyem. Based on the current analysis, the π-electrons dominate the long-range electronic coupling interactions in DNA, but they do not lead to one-dimensional molecular wire-like properties. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...