Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 70 (1998), S. 779-788 
    ISSN: 0020-7608
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The ground-state density amplitude {ρ(r)}1/2 for atoms and molecules satisfies a Schrödinger equation in which the customary one-body potential energy V(r) of density functional theory is supplemented by the addition of the Pauli potential Vp(r). Since neither the exchange-correlation potential Vxc or Vp are presently known as functionals of the electron density ρ(r), approximations are currently unavoidable. Here, widespread use is made of semiclassical approximations, within a self-consistent field framework both with and without magnetic fields. The importance of low-order gradient quantities ∇2ρ/ρ and (∇ρ/ρ)2 is one focal point, while a generalized low-density approximation is another. New relativistic differential equations are given. Then, the arguments are generalized to embrace the so-called Slater sum P(r, β) : β=(kβT)-1, of statistical mechanics, generated by the one-body potential V(r). This is a generalized partition function, and differential equations are set up for this quantity P(r, β) with and without external fields. Finally, some potentially fruitful directions for treating cylindrically symmetric inhomogeneous electron liquids are outlined, following the very recent work of Amovilli and March. These include modeling the Slater sum along the electric field direction for the Stark effect in a hydrogenlike atom.   © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 779-788, 1998
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...