Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 12 (1991), S. 469-486 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Current methods for assigning atomic multipoles focus on reproduction of the molecular electrostatic potential. Another aspect of electrostatic interaction, which is usually overlooked, is the forces that an external electric field exerts on the nuclei of a molecule. In a self-consistent theory, both the electrostatic potential and force should be accounted for. However, in general it is not easy to meet this requirement for the force. For planar molecules, though, a formal solution is available in terms of atomic multipoles that are extracted from the molecular multipolar tensors. These Force-Related (FR) atomic multipoles are discussed in detail for some typical diatomics and planar polyatomics, and are shown to provide a solid uniform framework for treating both aspects of the electrostatics. In contrast, the commonly used potential-derived charges (i.e., the atomic charges obtained by fitting the electrostatic potential) can yield large deviations with respect to electrostatic forces on the nuclei, even when the electrostatic potential is very well reproduced.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...