Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Four semiempirical methods (AM1, MNDO, PM3, and MINDO/3) are used to calculate the deformation angles of [n]paracyclophanes and their Dewar benzene isomers for n = 3… 10. The results obtained by all these methods are in good agreement with data from X-ray studies. We have determined the strain energies that, in both series of compounds, are due to two components: (1) the strain energy of deformation of the cycle (aromatic or Dewar Benzene skeletons) and (2) the strain energy of the oligomethylene chain. In [6]paracyclophane, the strain energy [SEring(MNDO) ≍ 32.9 kcal/mol] almost compensates the resonance energy (Eresonance ≈ 36 kcal/mol) so that its chemical properties are closer to alkenes than to benzenic compounds. To better reproduce the enthalpy of the valence isomerization [n]Dewar bezene → [n]paracyclophane, which is poorly calculated with these methods, a correction is proposed and the reaction enthalpy of [6]paracyclophane is estimated to be about ΔHr ≈ 15 ± 15 kcal/mol. It is found that MNDO and MINDO/3 need the smallest corrections, but MNDO leads to better geometries than MINDO/3. In conclusion, MNDO seems to be the best technique for further studies of these compounds. © 1992 by John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...