Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 155-161 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An algorithm is described for refining the populations of a set of multiple-solution conformers using experimental nuclear Overhauser effects (nOes). The method is based upon representing the effective relaxation matrix for the set of interconverting proposed conformers as a linear combination of relaxation matrices (LCORMs) due to each conformer. The conformer population derivative of the nOe is derived from a Taylor series expression for the calculated nOe. This derivative may then be used in a standard nonlinear least-squares refinement procedure. The LCORM nOe procedure is tested using a monosaccharide system, 1-O-methyl-α-L-iduronate, that is known to exhibit conformational variability. The measured nOes for this system are used to refine the populations of a set of three static conformers, namely, the 1C4, 4C1, and 2S0 ring conformers. The populations thus derived are compared to those previously obtained using nuclear magnetic resonance proton-proton coupling constant information. Two possible extensions to the method are discussed: The first uses combined nOe and coupling constant data while the second removes the restrictions that the conformers used for fitting be rigid entities. © 1994 by John Wiley & Sons, Inc.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...