Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1271-1290 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article describes an extension to previously developed constraint techniques. These enhanced constraint methods will enable the study of large computational chemistry problems that cannot be easily handled with current constrained molecular dynamics (MD) methods. These methods are based on an O(N) solution to the constrained equations of motion. The benefits of this approach are that (1) the system constraints are solved exactly at each time step, (2) the solution algorithm is noniterative, (3) the algorithm is recursive and scales as O(N), (4) the algorithm is numerically stable, (5) the algorithm is highly amenable to parallel processing, and (6) potentially greater integration step sizes are possible. It is anticipated that application of this methodology will provide a 10- to 100-improvement in the speed of a large molecular trajectory as compared with the time required to run a conventional atomistic unconstrained simulation. It is, therefore, anticipated that this methodology will provide an enabling capacity for pursuing the drug discovery process for large molecular systems. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...