Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0192-8651
    Keywords: protein folding ; multibody interactions ; electrostatic interactions ; cumulant expansion ; potential of mean force ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Based on the dipole model of peptide groups developed in our earlier work [Liwo et al., Prot. Sci., 2, 1697 (1993)], a cumulant expansion of the average free energy of the system of freely rotating peptide-group dipoles tethered to a fixed α-carbon trace is derived. A graphical approach is presented to find all nonvanishing terms in the cumulants. In particular, analytical expressions for three- and four-body (correlation) terms in the averaged interaction potential of united peptide groups are derived. These expressions are similar to the cooperative forces in hydrogen bonding introduced by Koliński and Skolnick [J. Chem. Phys., 97, 9412 (1992)]. The cooperativity arises here naturally from the higher order terms in the power-series expansion (in the inverse of the temperature) for the average energy. Test calculations have shown that addition of the derived four-body term to the statistical united-residue potential of our earlier work [Liwo et al., J. Comput. Chem., 18, 849, 874 (1997)] greatly improves its performance in folding poly-L-alanine into an α-helix.   © 1998 John Wiley & Sons, Inc.   J Comput Chem 19: 259-276, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...