Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 19 (1998), S. 524-534 
    ISSN: 0192-8651
    Keywords: ab initio conformational analysis ; cyclooctane molecule ; potential energy surface ; Hartree-Fock theory ; Møller-Plesset theory ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The potential energy surface (PES) for the cyclooctane molecule was comprehensively investigated at the Hartree-Fock (HF) level of theory employing the 3-21G, 6-31G, and 6-31G* basis sets. Six distinct true minimum energy structures (named B, BB, BC, CROWN, TBC, and TCC1), characterized through harmonic frequency analysis, were located on the multidimensional PES. Two transition state structures were also located on the PES for the cyclooctane molecule. Electron correlation effects were accounted for using the Møller-Plesset second-order perturbation theory (MP2) approach. The predicted global minimum energy structure on the ab initio PES for the cyclooctane molecule is the BC conformer. A gas phase electron diffraction study at 300 K suggested a conformational mixture while an NMR study in solution at 161.5 K predicted the BC conformer as the predominant form. The equilibrium constants reported in the present study, which were evaluated from the ab initio calculated total Gibbs free energy change values, were in good agreement with both experimental investigations. The ab initio results showed that the low temperature condition significantly favored the BC conformer while above room temperature both BC and CROWN structures can coexist.   © 1998 John Wiley & Sons, Inc.   J Comput Chem 19: 524-534, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...