Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 5 (1985), S. 81-97 
    ISSN: 0271-2091
    Keywords: Compressible Flow ; Turbulent Flow ; Boundary Layers ; Galerkin Method ; Spline Functions ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The applicability of a finite element-differential method to the computation of steady two-dimensional low-speed, transonic and supersonic turbulent boundary-layer flows is investigated. The turbulence model chosen for the Reynolds shear stress and turbulent heat flux is the K-∊ two-equation model. Calculations are extended up to the wall and the exact values of the dependent variables at the wall are used as boundary conditions. A number of transformations are carried out and the assumed solutions at a longitudinal station are represented by complete cubic spline functions. In essence, the method converts the governing partial differential equations into a system of ordinary differential equations by a weighted residuals method and invokes an ordinary differential equation solver for the numerical integration of the reduced initial-value problem. The results of the computations reveal that the method is highly accurate and efficient. Furthermore, the accuracy and applicability of the k-∊ turbulence model are examined by comparing results of the computations with experimental data. The agreement is very good.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...