Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 26 (1998), S. 403-442 
    ISSN: 0271-2091
    Keywords: oscillating flow ; Keulegan-Carpenter number ; finite element method ; in-line force ; transverse force ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The results of a numerical study of the viscous oscillating flow around a circular cylinder at low Keulegan-Carpenter numbers (KC) and frequency parameters (β) are presented in this paper. The finite element method was used for the solution of the Navier-Stokes equations in the formulation where the streamfunction and vorticity are the field variables. The computation was conducted at Keulegan-Carpenter numbers extending up to KC=15 and frequency parameters ranging between β=6 and 100. At low values of the Keulegan-Carpenter number the flow remains symmetrical. As the Keulegan-Carpenter number is increased over a certain value which depends also on the frequency parameter, asymmetries appear in the flow which are eventually amplified and lead finally to complex vortex-shedding patterns, some of which are markedly different from those observed at higher frequency parameters. The solution revealed that although for certain values of KC and β the shedding of vortices is periodic, there also exists a complicated flow regime in which the flow is not periodic but switches between different modes in consecutive cycles of flow oscillation. For the various flow cases examined, the traces of the hydrodynamic forces are presented and the hydrodynamic coefficients and RMS values of the in-line force are compared with experimental evidence. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 33 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...