Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 737-757 
    ISSN: 0271-2091
    Keywords: high-order ; compact ; finite difference ; no-slip ; no-penetration ; driven cavity ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Three recent papers have studied fourth-order compact discretizations of the streamfunction vorticity equations. They differed primarily in how the no-slip wall boundary conditions were handled. In this paper, these different formulas are compared to one another, as well as to three newly proposed formulas. Special consideration is paid to the truncation errors; in particular, it is shown that many well-known formulations are actually more accurate by O(h) than previously reported, where h is the mesh size. These new theoretical error rates are confirmed with an analytical model problem. The different formulas are then compared with published driven cavity results, both in terms of accuracy and performance, and the newly proposed high-order Jensen formula is judged to have the marginally best combination of these properties. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...