Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 41 (1990), S. 735-749 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Electrocopolymerization of 3-carboxyphenyl maleimide and styrene onto Hercules AS-4 graphite fiber surfaces has been successfully carried out from an aqueous solution containing monomers and dilute sulfuric acid. Initiation of copolymerization of the monomers dissolved in a small amount of dimethylacetamide is achieved by constant-current electrolysis in the cathodic chamber of a three-compartment electrolysis cell. Polymerization is initiated at the fiber surfaces; little polymer is formed in the cell solution. Electrocopolymerization is very consistent and rapid. The amount of polymer increases predictably with increasing comonomer concentration and current density. Using a 0.4 M (1 : 1) comonomer concentration, 0.0125 M sulfuric acid solution, and a current density of 20 mA/g, more than 60 wt % of copolymer coating per unit weight of graphite fibers is obtained within thirty minutes. Thermal gravimetric analysis showed the copolymer to be very stable at elevated temperatures and has initial and final decomposition temperatures of 430 and 520°C, respectively. The glass transition temperature measurement of the copolymer coatings was carried out by differential scanning calorimetry. A single glass transition temperature was obtained of about 210°C for most samples. The glass transition temperature of the copolymers did not change significantly with changing comonomer feed composition. Functional group and compositional analysis of the copolymer was done by FTIR spectroscopy. The copolymer composition remained relatively the same for copolymers made from different styrene/3-carboxyphenyl maleimide feed composition, confirming a strong tendency toward alternation for the system.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...