Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 55 (1995), S. 1691-1702 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Deformation of polycarbonate (PC) impact-modified with a core-shell rubber (MBS) was examined at the microscale and nanoscale. The stress-whitened zone (SWZ) that formed ahead of a semicircular notch was sectioned and examined in an optical microscope and transmission electron microscope. At the microscale, the texture of the SWZ consisted of fine shear lines that formed when cavitation of the rubber particles relieved triaxiality and enabled the PC matrix in the SWZ to deform in shear. Examination of thin sections from the SWZ in the transmission electron microscope revealed nanoscale deformation of the rubber particles. When the particle concentration was low (2%), only random cavitation of rubber particles was observed. At higher particle concentrations (5 and 10%), cooperative cavitation produced linear arrays of cavitated particles. The matrix ligaments between cavitated particles were strong enough that they did not fracture; higher strains were accommodated by particle cavitation and matrix extension in the regions separating the arrays. The cavitated arrays were also observed in the damage zone that accompanied the fracture surface of specimens impacted at -20°C. Cooperative cavitation may have implications for the impact strength of blends with higher concentrations of rubber particles. The possibility that particle-particle interactions facilitate cavitation and promote matrix shear deformation is especially relevant to low-temperature impact strength. © 1995 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...