Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 61 (1996), S. 945-950 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effect of pressure on gas permeability of a rubbery polymer, 1,2-polybutadiene, is investigated for 15 gases with various molecular sizes and solubilities in the ranges of pressure up to 110 atm at 25°C. The permeability for slightly soluble gases (He, Ne, H2, N2, O2, and Ar) decreases with increasing pressure, and that for soluble gases (CH4, Kr, CO2, N2O, C2H4, Xe, C2H6, C3H6, and C3H8) increases with increasing pressure. Logarithms of permeability coefficient versus feed-gas pressure for the slightly soluble gases, CH4 and Kr, is linear within each pressure range, whereas such plots become convex toward the pressure axis for more soluble gases, such as CO2, N2O, C2H4, Xe, C2H6, C3H6, and C3H8. By analyzing the pressure dependence of permeability using sorption data of the gases, contributions of concentration and hydrostatic pressure to the gas diffusivity are estimated. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...