Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 113-126 
    ISSN: 0887-6266
    Keywords: enthalpy relaxation ; physical aging ; DSC ; glassy state ; thermoplastic polymers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The enthalpy relaxation of a series of linear amorphous polyesters (poly(propylene isophthalate) (PPIP), poly(propylene terephthalate) (PPTP), poly(ethylene terephthalate) (PETP), and poly(dipropylene terephthalate) (PDPT)) has been investigated by differential scanning calorimetry (DSC). These polyesters have been annealed at equal undercooling below their respective glass transition temperatures, Tg, (Tg - 27°C, Tg - 15°C, and Tg - 9°C) for periods of time from 15 min to 480 h. The key parameters of structural relaxation, namely the apparent activation energy (Δh*), the nonlinearity parameter (x) and the nonexponentiality parameter (β), have been determined for each polyester and related to an effective relaxation rate (1/τeff) and to the chemical structure. We observe that the variation of the structural relaxation parameters shows a trend that is common to other polymeric systems, whereby an increase of x and β corresponds a decrease in Δh*. The comparison of these parameters in PETP and in PPTP gives information about the effect of the introduction of a methyl group pendant from the main chain; the x parameter increases (i.e., a reduced contribution of the structure to the relaxation times), β increases (i.e., a narrow distribution of relaxation times), and Δh* decreases. Additionally, enthalpy relaxation experiments show that a decrease of Δh* correlates with an increase of 1/τeff, when they are measured at a fixed value of the excess enthalpy, δH. The introduction of an isopropyl ether group in PDPT with respect to PPTP decreases both x and β, but increases Δh*, which the rate of relaxation decreases. The ring substitution in PPTP and PPIP originates less significant changes in the structural parameters. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 113-126, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...