Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 3087-3100 
    ISSN: 0887-6266
    Keywords: polymer dynamics ; light scattering spectroscopy ; probe diffusion ; coupling model ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We studied translational diffusion of dilute monodisperse spheres (diameters 14 〈 d 〈 455 nm) in aqueous 1 MDa hydroxypropylcellulose (0 ≤ c ≤ 7 g/L) at 25°C using quasielastic light scattering. Spectra are highly bimodal. The two spectral modes (“slow,” “fast”) have different physical properties. Probe behavior differs between small (d 〈 Rh) and large (d ≥ Rg) probes; Rh and Rg are the matrix polymer hydrodynamic radius and the radius of gyration, respectively. We examined the dependences of spectral lineshape parameters on d, c, scattering vector q, and viscosity η for all four probe-size and mode-type combinations. We find three time scale-separated modes: (1) a large-probe slow mode has properties characteristic of particle motion in a viscous medium; (2) a large-probe fast mode and small-probe slow modes share the same time scale, and have properties characteristic of probe motion coupled to internal chain dynamics; and (3) a small-probe fast mode has properties that can be attributed to the probe sampling local chain relaxations. In the analysis, we also attempted to apply the coupling/scaling (CS) model of Ngai and Phillies [Ngai, K. L., Phillies, G. D. J. J. Chem. Phys., 105, 8385 (1996)] to analyze our data. We find that the second mode is described by the coupling/scaling model for probe diffusion; the first and third modes do not follow the predictions of this model. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3087-3100, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...