Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 12 (1983), S. 393-411 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The axoplasmic reticulum in myelinated axons is an extensive system of branched smooth membranous tubules which is found throughout the length of large axons. To investigate its motility and possible role in fast axonal transport, a focal chilling method was used to arrest transport at two sites separated by a 3 mm wide warm region along the saphenous nerve of mice. The experiments ran for 3–4 h since axoplasmic material travelling faster than 25 mm/day would clear from the central warm region. The nerve was subsequently fixed and processed by a technique that enhances the electron density of the axoplasmic reticulum. Thin and thick sections from several regions along the nerve were then systematically studied using conventional and high voltage electron microscopy. In these studies we found that: 1. the axoplasmic reticulum does not accumulate against the proximal sides of the cold blocks; 2. although often closely associated, there is no evidence of continuity between the axoplasmic reticulum and the discrete membranous compartments that do accumulate proximal to the chilled regions; 3. the axoplasmic reticulum remains in the central 3 mm wide warm region; 4. the axoplasmic reticulum does not accumulate against the distal sides of the cold blocks; 5. retrogradely moving elements that do accumulate distal to the cold blocks do not fuse with the axoplasmic reticulum and are not contained in it; and 6. both retrograde and anterograde vector types are often closely associated with elements of axoplasmic reticulum. These results were supported by quantitative morphometric analysis. We conclude that the axoplasmic reticulum represents a discrete membrane system, separate from either anterogradely or retrogradely moving rapid transport vectors, and that this interconnected cisternal system itself is not rapidly transported.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...