Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental mechanics 29 (1989), S. 188-194 
    ISSN: 1741-2765
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A novel impact three-point bend test method has been developed for determining the dynamic fracture-initiation toughness,K Id, over the range of loading rates $$10^5 MPa\sqrt m /s \leqslant K_I \leqslant 10^5 MPa\sqrt m /s$$ . The split-Hopkinson pressure-bar technique is used to measure dynamic loads applied to a bend specimen with a fatigue precrack. The stress-intensity-factor histories for the bend specimen are evaluated by means of a dynamic finite-element technique and the standard formula (ASTM E 399-83) based on the measured dynamic loads. The time of crack initiation is determined using a strain gage mounted near a crack tip. The results for 7075-T6 aluminum alloy and Ti−6A1−2Sn−4Zr−6Mo alloy indicate that the reliableK Id data can only be obtained by evaluation procedures which take the inertial effects into account. It is shown that the novel impact bend test method in conjunction with dynamic finite-element analysis provides an effective means of characterizing the dynamic fracture-toughness parameterK Id.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...