Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental mechanics 9 (1969), S. 1-8 
    ISSN: 1741-2765
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A number of studies has shown that natural frequencies and, accordingly, the minimum critical speed for the formation of a standing wave in thin, rotating, circular disks can be beneficially altered by purposely induced initial membrane stresses. The possibility of controlling natural frequencies by induced thermal membrane stresses, rather than initial stresses, has received some previous theoretical attention and is experimentally examined here for a stationary, constant-thickness, centrally clamped, circular disk. The primary advantages of thermal membrane stresses are manifested in the inherent flexibility in adjustment of the thermal as opposed to the initial stresses. Increases in the minimum critical speed, which is proportional here to the zero nodal circle—two nodal-diameter natural frequency, of 20 percent were determined with moderate heating. This can be considered a relatively small critical-speed increase when compared with variations expected in many common rotating disk environments. A thermal model, which utilizes as input the peripheral disk heat flux and the controlled disk temperature at some known radius, is shown to predict the temperature distribution and natural frequencies with reasonable accuracy. The applicability of this model enhances the potential practicality of the induced thermal-membrane-stress method of natural frequency and/or critical speed control.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...