Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 72 (1980), S. 447-475 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Dynamical evolution of a relativistic explosion resulting from a large amount of energy release in a homogenous medium is studied using the Khalatnikov equation describing relativistic, hydrodynamic, planar flow. The early phase of the explosion is idealized to two stages: a free expansion and a shock wave stage. By the hodograph transformation inverting the dependent and independent variables, the hydrodynamic equations for the relativistic flow are reduced to second-order linear equations in a velocity-enthalpy space and they are solved by the method of Laplace transformation. The propagation laws and flow structures of the relativistic expansion are obtained at each stage. In the free expansion stage, the flow with a sufficiently high sound velocity forms a thin shell of the energy density in the comoving frame at the front and accelerates the front. In the shock wave stage, the Lorentz factor of the shock front decreases logarithmically with time. The transition time from a free expansion to a shock wave stage suggests that the super-light expansion observed in extragalactic radio sources has no spherical geometry but must be confined to a narrow cone.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...