Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6776
    Keywords: fungal laccase ; heterocycles ; ionization potential ; laccase ; oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Purified laccase from Coriolopsis gallica UAMH8260 oxidized carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene in the presence of 1-hydroxybenzotriazole and 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) as free radical mediators. Susceptibility to laccase oxidation appears related to the ionization potential (IP) of the substrate: compounds with an IP above 8.52, dibenzofuran (IP = 8.77) and benzothiophene (IP = 8.73) were not attacked. Carbazole (IP = 7.68) was the most sensitive to oxidation with 〉99% transformed with 10 milliunits of laccase after 1 h, though most reactions were carried out for 18 h. 9-Fluorenone was identified as the product of fluorene (IP = 8.52) oxidation, and dibenzothiophene sulfone from dibenzothiophene (IP = 8.44). Although carbazole and N-ethylcarbazole were both completely removed within 18 h, no oxidation or condensation metabolites were detected. This investigation is the first to report the oxidation of dibenzothiophene, carbazole, and N-ethylcarbazole by laccase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...