Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 97-103 
    ISSN: 1572-9729
    Keywords: Escherichia coli ; genetic engineering ; mercury bioaccumulation ; mercury transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ion exchange or biosorptive processes for metalremoval generally lack specificity in metal bindingand are sensitive to ambient conditions, e.g. pH,ionic strength and the presence of metal chelators. Inthis study, cells of a genetically engineered Escherichia coli strain, JM109, which expressesmetallothionein and a Hg2+ transport system afterinduction were evaluated for their selectivity forHg2+ accumulation in the presence of sodium,magnesium, or cadmium ions and their sensitivity to pHor the presence of metal chelators during Hg2+bioaccumulation. The genetically engineered E.coli cells in suspension accumulated Hg2+effectively at low concentrations (0-20 µM) overa broad range of pH (3 to 11). The presence of 400 mMsodium chloride, 200 mM magnesium chloride, or100 µM cadmium ions did not have a significanteffect on the bioaccumulation of 5 µm Hg2+,indicating that this process is not sensitive to highionic strength and is highly selective against sodium,magnesium, or cadmium ions. Metal chelators usuallyinterfere with ion exchange or biosorptive processes.However, two common metal chelators, EDTA and citrate,had no significant effect on Hg2+ bioaccumulationby the genetically engineered strain. These resultssuggest that this E. coli strain could be usedfor selective removal of Hg2+ from waste water orfrom contaminated solutions which are resistant tocommon treatments. A second potential applicationwould be to remove Hg2+ from Hg2+-contaminated soil, sediment, or particulates bywashing them with a Hg2+ chelator andregenerating the chelator by passing the solutionthrough a reactor containing the strain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...