Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 29 (1994), S. 1135-1158 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Sulphide compounds belong to the family of chalcogenides and are well known for their optical and electronic properties. They possess good optical properties because of their ability to transmit into the infrared (IR) region. Several sulphide glasses are known to exist which exhibit far infrared transmission and are also useful semiconductors. In recent years, there has been an increasing interest in IR materials to be used on surveillance equipment. This led to the identification of several new crystalline sulphide materials which can transmit very far into the IR region (up to a wavelength of 14 Μm). Crystalline and amorphous rare-earth sulphides emerged as a new class of materials, which possess several unique optical and electronic properties. This paper reviews the status of these rare-earth sulphide amorphous and polycrystalline materials, the techniques used to process these materials and discusses their structure, thermal, mechanical and optical properties. Conventional and emergent novel chemical processing techniques that are used for synthesizing these materials are reviewed in detail. The use of metallorganic precursors and the modification of their chemistry to tailor the composition of the final ceramic are illustrated. The potential of these chemical techniques and their advantages over the conventional solid state techniques used for processing sulphide ceramics is discussed, particularly in light of their successful applications in processing novel electronic and optical oxide ceramics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...