Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9788
    Keywords: glycerol-3-phosphate acyltransferase ; phosphatidylglycerol ; chilling tolerance ; transformation ; fatty acid composition ; Oryza sativa L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The chilling sensitivity of several plant species is closely correlated with the levels of unsaturation of fatty acids in the phosphatidylglycerol (PG) of chloroplast membranes. Plants with a high proportion of unsaturated fatty acids, such as Arabidopsis thaliana, are resistant to chilling, whereas species like squash with only a low proportion are rather sensitive to chilling. The glycerol-3-phosphate O-acyltransferase (GPAT) enzyme of chloroplasts plays an important role in determining the levels of PG fatty acid desaturation. A cDNA for oleate-selective GPAT of Arabidopsis under the control of a maize Ubiquitin promoter was introduced into rice (Oryza sativa L.) using the Agrobacterium-mediated gene transfer method. The levels of unsaturated fatty acids in the phosphatidylglycerol of transformed rice leaves were found to be 28% higher than that of untransformed controls. The net photosynthetic rate of leaves of transformed rice plants was 20% higher than that of the wild type at 17°C. Thus, introduction of cDNA for the Arabidopsis GPAT causes greater unsaturation of fatty acids and confers chilling tolerance of photosynthesis on rice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...