Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: light interception ; phosphorus ; radiation-use efficiency ; yield components ; Zea mays L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Biomass accumulation by crops depends on both light interception by leaves and on the efficiency with which the intercepted light is used to produce dry matter. Our aim was to identify which of these processes were affected for maize (Zea mays L., cv Volga) field crops grown under phosphorus (P) deficiency. In the preceding paper (Plénet et al., 2000), it was shown that P deficiency severely reduced leaf growth. In this paper, the effect of P deficiency on the radiation-use efficiency (RUE) was investigated. The experimental work was carried out in 1995, 1996 and 1997 on a long-term P fertilisation trial located on a sandy soil in the south-west of France. Three P fertilisation regimes have been applied since 1972: no- P (P0 treatment) and different rates of P fertiliser (P1.5: 1.5 times the grain P export and P3: 3 times the grain P export). These fertilisation regimes have led to contrasted levels of soil P supply. Only slight differences were observed between the P1.5 and P3 treatment for above-ground biomass accumulation and grain yield. Conversely the grain yield was significantly reduced in P0 (−11%). Above-ground biomass production was severely reduced, with the maximum difference between treatment (−60% in P0) occurring between 400 and 600 °C days after sowing. The lower biomass production in P0 was accounted for by the reduced amount of photosynthetically active radiation (PAR) absorbed by the canopy, which was itself the consequence of the reduced leaf area index (see Plénet et al., 2000). The calculated RUE were found to depend on the plant stage, especially during the pre-flowering period, and on the average air temperature. No effect of P deficiency was observed on the calculated RUE, even during the period when above-ground biomass accumulation was the most severely reduced. These results obtained in field crop conditions strengthen the idea that P deficiency affects plant growth, especially leaf growth, earlier and to a greater extent than photosynthesis per unit leaf area.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...