Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1634
    Keywords: porous medium ; convection ; boundary layer ; transient ; heat flux.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract An analysis is made of the transient free convection from a vertical flat plate which is embedded in a fluid-saturated porous medium. It is assumed that for time $$\overline \tau 〈 0$$ a steady state temperature or velocity has been obtained in the boundary-layer which occurs due to a uniform flux dissipation rate $$q_1^{\prime \prime } $$ . Then at time $$\overline \tau = 0$$ the heat flux on the plate is suddenly changed to $$q_2^{\prime \prime } $$ and maintained at this value for $$\overline \tau 〉 0$$ . An analytical solution has been obtained for the temperature/velocity field for small times in which the transport effects are confined within an inner layer adjacent to the plate. These effects cause a new steady boundary layer. A numerical solution of the full boundary-layer equations is then obtained for the whole transient from $$\overline \tau = 0$$ to the steady state, firstly by means of a step-by-step method and then by a matching technique. The transition between the two distinct solution methods is always observed to occur very near to the turning point of the plate surface temperature, a time at which the fluid temperature is close to its steady state profile. The solution obtained using the step-by-step method shows excellent agreement with the small time analytical solution. Results are presented to illustrate the occurrence of transients from both small and large increases and decreases in the levels of existing energy inputs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...