Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 1 (1970), S. 493-509 
    ISSN: 1573-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Solid state electrolysis experiments were performed on the biomolecules, hemoglobin, cytochromec, collagen, lecithin and melanin at various hydration states; and for hemoglobin at various solvation states with methanol adsorbate. The evolved hydrogen was measured and compared with theoretical (Faraday's Law) expectations for the known amount of charge passed through the adsorbents. The difference between the theoretical and actual is a measure of the contributions of electronic charge carriers to the total current. Thus the protonic/electronic conduction ratios are determined. All biomolecules tested appear to be mixed semiconductors. That is, both electronic and protonic charge carriers make significant contributions to the currents over hydration ranges from 6% to above 50%. The constant temperature conductivity increases exponentially with hydration (solvation) but the ratio of protonic to electronic conduction increases linearly with hydration for the globular proteins, hemoglobin and cytochromec. The fibrous protein, collagen, may be a protonic semiconductor in the “dry” state, with an electronic component that increases linearly with hydration. The hemoglobin-methanol system shows only electronic conductivity below 2 BET monolayers, with a sharp onset to 70% protonic conductivity above this value. This result is similar to the DNA-water system previously reported. The protonic/electronic ratio in hydrated hemoglobin may be a function of the applied voltage; being predominantly electronic below 30 volts (300 volts/cm), and a constant mixed value above 100 volts (1000 volts/cm). Our results suggest that both electronic and protonic conduction are intrinsic processes in these substances and subject to control by a number of techniques.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...