Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9591
    Keywords: Fusion materials ; materials development ; neutron damage ; neutron source
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The design and performance of a relatively low-cost, plasma-based, 14-MeV D-T neutron source for accelerated end-of-life testing of fusion reactor materials are described in this article. An intense flux (up to 5×1018 n/m2·s) of 14-MeV neutrons is produced in a fully-ionized high-density tritium target (n e ≈ 3×1021 m−3) by injecting a current of 150-keV deuterium atoms. The tritium plasma target and the energetic D+ density produced by D0 injection are confined in a column of diameter ⩽ 0.16 m by a linear magnet set, which provides magnetic fields up to 12 T. Energy deposited by transverse injection of neutral beams at the midpoint of the column is conducted along the plasma column to the end regions. Longitudinal plasma pressure in the column is balanced by neutral gas pressure in the end tanks. The target plasma temperature is about 200 eV at the beam-injection position and falls to 5 eV or less in the end region. Ions reach the walls with energies below the sputtering threshold, and the wall temperature is maintained below 740 K by conventional cooling technology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...