Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: pharmacokinetics ; Calphostin C ; HPLC ; perylenequinone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To examine the pharmacokinetic features and metabolism of calphostin C, a naturally occurring perylenequinone with potent antileukemic activity. Methods. HPLC-based quantitative detection methods were used to measure calphostin C levels in lysates of leukemic cells and in plasma of mice treated with calphostin C. The plasma concentration-time data were analyzed using the WinNonlin program. In vitro esterases and a microsome P450 preparation in conjunction with a LC-MS(API-EI) system were used to study the metabolism of calphostin C. Results. An intracellular exposure level (AUC0−6h) of 257 μM·h was achieved after in vitro treatment of NALM-6 cells with calphostin C at a 5 μM final concentration in culture medium. After intraperitoneal (i.p.) injection of a 40 mg/kg nontoxic bolus dose of calphostin C, the estimated Cmax was 2.9 μM, which is higher than the effective in vitro concentration of calphostin C against leukemic cells. Drug absorption after i.p. administration was rapid with an absorption half-life of 24.2 min and the estimated tmax was 63.0 min. Calphostin C was cleared with an elimination half-life of 91.3 min. An inactive and smaller metabolite (calphostin B) was detected in plasma of calphostin C-treated mice with a tmax of 41.3 min. Esterase (but not P450) treatment of calphostin C in vitro yielded an inactive metabolite (calphostin B) of the same size and elution profile. Conclusions. Target plasma calphostin C concentrations of potent antileukemic activity can be reached in mice at nontoxic dose levels. This pilot pharmacokinetic study of calphostin C combined with the availability of the described quantitative HPLC method for its detection in cells and plasma provide the basis for future preclinical evaluation of calphostin C and its potential as an anti-leukemic drug.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...