Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 340 (1989), S. 161-169 
    ISSN: 1432-1912
    Keywords: Amperozide ; Rat ; Behavioural stimulation ; Monoamines ; Biochemical effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Amperozide (FG 5606; N-ethyl-4-[4′,4′-bis(p-fluorophenyl) butyl]-1-piperazinecarboximide) is a new putatively antipsychotic compound with a postulated 5-HT2 antagonistic profile. Somewhat surprisingly amperozide dose dependently induced a behavioural stimulation in reserpinized and in nonpretreated rats. The behaviour consisted of both forward and backward locomotion as well as forepaw circling and a grooming like behaviour. Since the behavioural pattern clearly differ from that produced by classical dopaminergic or serotonergic agonists (e. g. apomorphine or 8-hydroxy-2-(di-n-propylamino)tetralin, 8-OH-DPAT), and has not been previously reported, we decided to investigate the origin of this effect. In the behavioural paradigms it was not possible to antagonize the amperozide stimulation in reserpinized rats with the dopamine receptor blockers haloperidol, raclopride or R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1 H-3-benzazepine, SCH 23390. Neither the 5-HT2 receptor blocking agent ritanserin nor the tryptophan and tyrosine hydroxylase inhibitor DL-3,4-dihydroxy-phenyl-α-propylacetamide, H22/54, could block the motoric stimulation or the forepaw circling behaviour produced by amperozide. However, the noradrenaline synthesis inhibitor bis- (4-methyl-1-homopiperazinylthiocarbonyl)-disulfide, FLA 63, as well as the α-adrenoceptor antagonist phenoxy-benzamine, could partly inhibit the locomotor stimulation. Hence, noradrenaline seems to be, at least in part, involved in the behavioural stimulatory effect of amperozide. synthesis rate (DOPA formation) in normal or reserpinized animals in the striatal or the limbic brain regions. In reserpinized animals amperozide also failed to antagonize the decrease in DOPA formation after apomorphine and 3-hydroxy-benzylhydrazine HCl, NSD 1015, in these regions. Thus, amperozide failed to show agonistic or antagonistic action on central dopamine receptors. However, in the noradrenaline rich cortical region amperozide induced an increase in DOPA accumulation. The compound also increased the levels of normetanephrine as well as antagonized the decrease in DOPA accumulation by clonidine in the cortical brain region. Amperozide also increased the disappearence rate of noradrenaline after inhibitor of tyrosine hydroxylase by α-methyl-para-tyrosine. These data suggest that, biochemically, amperozide has got α2 antagonistic properties. However, it is not evident that these biochemical properties are responsible for the behavioural effects of amperozide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...