Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 102 (1994), S. 21-33 
    ISSN: 1432-1106
    Keywords: Somatosensory ; Acetylcholine ; Alzheimer's disease ; Nucleus basalis magnocellularis ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Cholinergic neurons in the nucleus basalis magnocellularis (NBM) project to the cerebral cortex and are thought to play an important role in learning and memory, and other cognitive functions. In the present study, we examined the effects of NBM stimulation on the response properties of individual cortical neurons in layer V of the rat somatosensory cortex. Seventy-three neurons were studied before and after a brief electrical stimulation of NBM. Transient changes in spontaneous activity were observed in 60% of the cells, and in most cases this background activity decreased. Recordings lasting more than 1 h stimulation were obtained from 56 cells. Because some NBM stimulation-induced effects lasted several hours, neurons were evaluated in two groups, NBM1 and NBM2. NBM1 neurons were those exposed to either the first NBM stimulation of the day or an NBM restimulation following a more than 5 h stimulation-free period. Neurons exposed to NBM restimulation following a stimulation free interval of less than 5 h were classified as NBM2. Sixty-nine percent of the 32 NBM1 neurons displayed marked decreases in spontaneous activity and/or increases in the response evoked by deflecting a contralateral facial vibrissa. NBM1 stimulation caused some units to respond to previously minimally effective whisker stimuli. Stimulation effects often lasted several hours. By contrast, long-lasting changes were observed in only 25% of the 24 NBM2 neurons, and the only consistent effect was on spontaneous, not stimulus-evoked, activity. Systemic injection of atropine blocked NBM stimulation-induced changes in spontaneous and stimulus-evoked activities. Control neurons, studied without NBM stimulation, failed to display consistent alterations in their response properties during the course of 1 h or more. Results demonstrate that NBM activation produces long-lasting, cholinergically mediated alterations in the response properties of somatosensory cortical neurons. Effects were complex, being influenced by factors such as the time interval between successive stimulations during an experiment. The complexity of these NBM mediated effects should be considered when designing therapies for neurodegenerative disorders characterized by loss of NBM neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...