Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 46 (1982), S. 413-424 
    ISSN: 1432-1106
    Keywords: Calossum ; Cats ; Interhemispheric communication ; Visual receptive fields
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The present experiment examined the receptive field (R.F.) properties of cortical cells which receive part of their input from the contralateral hemisphere via the corpus callosum. Two groups of cats were used for recording unit activity: a normal control group, and an experimental group consisting of cats which had their optic chiasmas split across the midline prior to the recording sessions. Acute recordings were carried out in the conventional manner using tungsten microelectrodes and N2O: O2 anaesthesia. The recording site was the 17–18 border. The stimulus consisted of a thin bar generated on an oscilloscope screen by a computer. The bar, whose orientation was varied automatically from 0 ° to 345 ° in 15 ° steps, was swept across the screen at constant speed orthogonal to the orientation. Various R.F. properties were studied using both quantitative and qualitative criteria. Thus, in the normal cat, simple, complex and hypercomplex type R.F.'s were found, whereas no callosally activated cell was of the simple type. The ocular dominance distribution found in the split chiasma cat was skewed towards the ipsilateral eye, although a fairly large number of cells could be driven with the two eyes. The R.F.'s of the callosally activated neurons were all situated close to the vertical meridian, which they sometimes straddled. Both in the normal and in the chiasma sectioned cats, the complex cells had larger R.F.'s than the other cell types. However, the R.F.'s determined through the ipsilateral eye was essentially of the same dimensions as those obtained through the indirect interhemispheric pathway, and this irrespective of cell type. Orientation specificity was similar for the two eyes in the split chiasma cats as it was for the normal cats although in the former the orientation tuning curve was narrower for the callosal pathway than for the more direct thalamo-cortical pathway. The results are interpreted within the context of the different functions ascribed to the corpus callosum in vision.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...