Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Hippocampus ; Synaptic plasticity ; Glial cells ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The reaction of microglial and a stroglial cells to anterograde axonal degeneration was studied in the fascia dentata of adult rats at various timepoints after removal of the entorhinal perforant path projection. Microglial cells were identified by histochemical staining for nucleoside diphosphatase (NDPase) at light and electron microscopical levels. Astroglial cells were stained immunocytochemically for glial fibrillary acidic protein (GFAP). Activated astroglial cells and some microglial cells also stained immunocytochemically for the intermediate filament protein vimentin. Phagocytotic activity was detected by histochemical staining for acid phosphatase. The postlesional connective reorganization of the cholinergic septohippocampal projection was monitored by histochemical staining for acetyl cholinesterase. Twenty-four hours after entorhinal cortex ablation, microglial cells in the perforant path zones of the fascia dentata and the adjacent neuropil reacted by shortening and coarsening of processes and an increase in NDPase reactivity. These changes occurred prior to a noticeable increase in GFAP immunoreactivity and hypertrophy of astroglial cells (first evident on postlesional day 2) or sprouting of cholinergic septohippocampal fibres (first evident on day 3). There was evidence of an early, local proliferation of microglial cells in the denervated perforant path zones and migration into these zones of microglial cells from adjacent intact areas. The specific accumulation of strongly stained microglial cells within the denervated parts of the dentate molecular layer persisted for at least 4 weeks, while the astroglial reaction subsided at 3 weeks. The results demonstrate an early activation of microglial cells by axonal degeneration, and indicate that these cells may play a pivotal, inductive role in the subsequent glial and neural events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...