Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 118 (1994), S. 767-776 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthetic rates of aquatic plants frequently increase with increasing current velocities. This is presumably due to a reduction in the thickness of the diffusion boundary-layer which allows for a higher carbon availability on the plant surface. Blades of the seagrasses Thalassia testudinum and Cymodocea nodosa exposed to different current velocities under controlled laboratory conditions, showed increased photosynthetic rates with increasing flow only at low current velocities (expressed as blade friction velocities, u *). Carbon saturation of photosynthetic processes occurred at a relatively low u * level (0.25 cm s-1) for T. testudinum collected from a calm environment compared to C. nodosa (0.64 cm s-1) collected from a surf zone. No further enhancement of photosynthetic rates was observed at higher u * levels, suggesting limitations in carbon diffusion through the boundary layer below critical u * levels and possible limitations in carbon fixation by the enzymatic system at higher u * levels. These results, as well as those of previous theoretical studies, assumed the flow on the immediate seagrass-blade surface to be hydrodynamically smooth. The presence of epiphytes and attached debris causes the surface of in situ seagrass blades to be exposed to flows ranging from smooth to rough-turbulent. As a consequence, the boundary-layer thickness on moderately epiphytized blades under medium to high flow-conditions is not continuous, but fluctuates in time and space, enhancing carbon transport. In situ u * levels measured directly on blades of seagrasses indicate that T. testudinum and C. nodosa can be exposed to conditions under which the boundary layer limits photosynthesis during short periods of time (milliseconds) during low-energy events. As waves cause the thickness of the diffusion boundary-layer to fluctuate constantly, carbon-limiting conditions do not persist for prolonged periods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...