Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 40 (1991), S. 181-185 
    ISSN: 1432-1041
    Keywords: Etizolam ; α-hydroxyetizolam ; healthy subjects ; kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary The pharmacokinetics of etizolam, a new thienodiazepine derivative, has been examined after single and multiple (0.5 mg tablet) (0.5 mg b.d for 1 week) oral therapeutic doses in healthy volunteers. The single-dose kinetic profile of etizolam suggested that absorption after oral dosage was reasonably rapid, the maximum plasma concentration (Cmax) being attained within 0.5–2 h in all subjects. The mean elimination half-life (t1/2) averaged 3.4 h. Consistent with this, steady-state concentration were rapidly achieved and accumulation was extremely limited. Predicted average plasma concentrations (Cp) did not differ significantly from those actually measured at steady-state, suggesting that the kinetics of etizolam was linear, at least at therapeutic doses. The mean wash-out t1/2 was comparable to the elimination t1/2 of the single dose, which means that the drug probably has no effect on hepatic microsomal enzymes and other kinetic variables after repeated dosing. At steady state plasma concentrations of the main metabolite, α-hydroxyetizolam, were higher and disappeared more slowly (mean t1/2 8.2 h) than those of the parent compound. Taken with the fact that in animals the metabolite shows almost the same potency of pharmacological action as etizolam, this suggests that it may contribute significantly to the clinical effects of the parent compound. Based on the kinetic characteristics of the parent drug and its metabolite, etizolam can be regarded as a short-acting benzodiazepine, with elimination kinetics between those of short-intermediate derivatives and ultra-rapidly eliminated benzodiazepines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...