Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 13 (1986), S. 235-243 
    ISSN: 1432-1017
    Keywords: Nerve endings ; action potential ; computer simulation ; membrane heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract A direct numerical integration method, as modified by Du Fort and Frankel (1953), has been used to solve the partial differential equation system which describes the spread of action potential in a mammalian nerve terminal. Branching of the terminal as well as inhomogeneous distributions of Na+ and K+ voltage-dependent channels (Brigant and Mallart 1982) have been incorporated in the model. Using the channel densities and the kinetic parameters measured in the node of Ranvier, the depolarization in the terminal branches has an amplitude of only 60% of the action potential in the node. Furthermore, the time courses of the calculated membrane currents differ considerably from the ones measured by Brigant and Mallart (1982) and by Konishi and Sears (1984). Increasing the Na+ and K+ channel densities may considerably increase the terminal depolarization and also reproduce qualitatively the current waveforms observed experimentally. The model can also reproduce some of the effects of pharmacological channel blocks. The simulation allows a new interpretation of the different components of membrane current along the terminal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...