Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 70 (2000), S. 125-133 
    ISSN: 1432-0630
    Keywords: PACS: 42.62.Fi; 81.05.Tp; 82.80.Ch
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract. This paper presents diagnostic data obtained from the plume of a graphite composite target during carbon nanotube production by the double-pulse laser oven method. The in situ emission spectrum (300 to 650 nm) is recorded at different locations upstream of the target and at different delay times from the lasers (IR and green). Spectral features are identified as emissions from C2 (Swan System: d3Πg–a3Πu) and C3 (Comet Head System: A1Πu–X1Σu +). Experimental spectra are compared with computed spectra to estimate vibrational temperatures of excited state C2 in the range of 2500 to 4000 K. The temporal evolution of the 510-nm band of C2 is monitored for two target positions in various locations, which shows confinement of the plume in the inner tube and increase in plume velocity with temperature. The excitation spectra of C2 are obtained by using a dye laser to pump the (0,1) transition of the Swan System and collecting the laser-induced fluorescence signal from C2. These are used to obtain “ground-state” rotational and vibrational temperatures which are close to the oven temperature. Images of the plume are also collected and are compared with the spectral measurements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...