Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1528
    Keywords: Turbulent drag reduction ; synergism ; shear stability ; polymer-polymer mixture ; polymer-fibre mixture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The turbulent drag reduction caused by polymer-polymer and polymerfibre mixtures has been measured in recirculatory flow of water. Shear stability studies have also been made on a number of drag reducing polymers, asbestos fibres and their mixtures in recirculatory turbulent flow of water. Reynolds numbers ranged from 20,000 to 57,000. Both positive and negative deviations from linear additive behaviour have been observed in drag reduction caused by the polymer-polymer mixtures depending upon their compositions, flow rate and polymer species in the mixture. The drag reduction by the mixtures has been predicted by using simple mixture rule equations including an interaction parameter. This interaction parameter is believed to depend upon the polymer interaction in the polymer mixture. The random coil size and rigidity of the polymer molecules appear to be responsible for the synergism observed in the drag reduction caused by the mixture. In general, mixtures having larger solvation number seem to give positive synergism. Synergism in drag reduction by the polymer-fibre mixtures has also been observed. The simple mixture law equation with interaction parameter is also applicable in predicting the drag reduction by the mixtures as above. The random coil size of the polymer molecules and the rigidity of the polymer-fibre system appear to be responsible for the synergism observed in drag reduction. In the shearstability studies it has been observed that the decrement in drag reduction (DR) is higher than the the decrement in absolute viscosity in most cases. Carboxymethyl cellulose is found to be the most shear stable polymer followed by guar gum, xanthan gum and polyacrylamide. The mixtures exhibiting synergism in causing drag reduction are found to be more shear stable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...