Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 21 (1975), S. 87-98 
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary To assess the active components of sodium flux across toad bladder as a function of transepithelial potential, unidirectional sodium fluxes between identical media were measured before and after adding sufficient ouabain (1.89×10−3 m) to eliminate active transport, while clamping transepithelial potential to 0, 100 or 150 mV. Evidence was adduced that ouabain does not alter passive fluxes, and that fluxes remain constant if ouabain is not added. Hence, the ouabain-inhibitable fluxes represent fluxes through the active path. Results were analyzed by a set of equations, previously shown to describe adequately passive fluxes under electrical gradients in this tissue, here modified by the insertion ofE, the potential at which bidirectional sodium fluxes (β E and Φ E ) through the active pathway are equal. According to these equations, β E and Φ E are the logarithmic mean of bidirectional fluxes through the active path at any potential, and the flux ratio in this path is modified by a constant factorQ ia, which represents the ratio of the bulk diffusion coefficient to the tracer diffusion coefficient in this pathway. The data are shown to conform closely to these equations.Q ia averages 2.54. Hence, serosal-to-mucosal flux vanishes rapidly as potential falls belowE. MeanE in these experiments was 158±1 mV. Thus, linear dependence of net flux in both active and passive pathways on potential is present, even though the sodium fluxes in both paths fail to conform to the Ussing flux ratio equation.Q i p〈1 in the passive path (qualitatively similar to exchange diffusion) andQ ia〉1 in the active path (as in single file pore diffusion). Both of these features tend to reduce the change in serosal-to-mucosal sodium flux induced by depolarization from spontaneous potential to zero potential (“short-circuiting”).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...