Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Discrete & computational geometry 5 (1990), S. 263-288 
    ISSN: 1432-0444
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract A hyperplane arrangement is a finite set of hyperplanes through the origin in a finite-dimensional real vector space. Such an arrangement divides the vector space into a finite set of regions. Every such region determines a partial order on the set of all regions in which these are ordered according to their combinatorial distance from the fixed base region. We show that the base region is simplicial whenever the poset of regions is a lattice and that conversely this condition is sufficient for the lattice property for three-dimensional arrangements, but not in higher dimensions. For simplicial arrangements, the poset of regions is always a lattice. In the case of supersolvable arrangements (arrangements for which the lattice of intersections of hyperplanes is supersolvable), the poset of regions is a lattice if the base region is suitably chosen. We describe the geometric structure of such arrangements and derive an expression for the rank-generating function similar to a known one for Coxeter arrangements. For arrangements with a lattice of regions we give a geometric interpretation of the lattice property in terms of a closure operator defined on the set of hyperplanes. The results generalize to oriented matroids. We show that the adjacency graph (and poset of regions) of an arrangement determines the associated oriented matroid and hence in particular the lattice of intersections.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...