Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1612-1112
    Keywords: Single short-column LC ; On-column sample enrichment ; Atmospheric pressure chemical ionization ; LC-tandem MS ; Environmental analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary Single short, i.e. ca 2-cm long, high-pressure-packed columns coupled with mass spectrometric (MS) or tandem MS detection enable rapid trace-level determination and identification of environmental pollutants in water samples. In this study an atmospheric pressure chemical ionization (APCI) interface has been used and the overall set-up was tested with a mixture of seventeen pesticides, including organophosphates, carbamates, phenylureas and triazines. For the majority of the test analytes, the most prominent peaks in the positive-ion APCI-MS spectra resulted from protonated molecules. For fifteen out of the seventeen pesticides short-column liquid chromatography (LC)-APCI-MS of water samples as small as 15 mL resulted in detection limits between 0.03 and 5 μg L−1 in full-scan mode and between 2 and 750 ng L−1 by selected ion monitoring (SIM), both recorded in the positive-ion mode. Production spectra from protonated molecules of the majority of the selected pesticides present at a level of 0.1 μg L−1 in tap water are successfully identified from a search against a pesticide MS-MS library compiled in-house. This short-column LC-APCI-MS(-MS) approach has, on the basis of full-scan positive-ion data and their product-ion spectra, also been used to confirm the identity of target compounds and to identify unknown organic micropollutants in environmental waters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...