Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 68 (1996), S. 2114-2116 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A voltage-controlled tunable two-color infrared detector with photovoltaic (PV) and photoconductive (PC) dual-mode operation at 3–5 μm and 8–14 μm using GaAs/AlAs/AlGaAs double barrier quantum wells (DBQWs) and bound-to-continuum GaAs/AlGaAs quantum wells is demonstrated. The photoresponse peak of the photovoltaic GaAs/AlAs/GaAlAs DBQWs is at 5.3 μm, and that of the photoconductive GaAs/GaAlAs quantum wells is at 9.0 μm. When the two-color detector is under a zero bias, the spectral response at 5.3 μm is close to saturate and the peak detectivity at 80 K can reach 1.0×1011 cmHz1/2/W, while the spectral photoresponsivity at 9.0 μm is absolutely zero completely. When the external voltage of the two-color detector is changed to 2.0 V, the spectral photoresponsivity at 5.3 μm becomes zero while the spectral photoresponsivity at 9.0 μm increases comparable to that at 5.3 μm under zero bias, and the peak detectivity (9.0 μm) at 80 K can reach 1.5×1010 cmHz1/2/W. Strictly speaking, this is a real bias-controlled tunable two-color infrared photodetector. We have proposed a model based on the PV and PC dual-mode operation of stacked two-color QWIPs and the effects of tunneling resonance with narrow energy width of photoexcited electrons in DBQWs, which can explain qualitatively the voltage-controlled tunable behavior of the photoresponse of the two-color infrared photodetector. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...