Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Chaos 9 (1999), S. 452-465 
    ISSN: 1089-7682
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We describe a wavelet-based approach to the investigation of spatiotemporally complex dynamics, and show through extensive numerical studies that the dynamics of the Kuramoto–Sivashinsky equation in the spatiotemporally chaotic regime may be understood in terms of localized dynamics in both space and scale (wave number). A projection onto a spline wavelet basis enables good separation of scales, each with characteristic dynamics. At the large scales, one observes essentially slow Gaussian dynamics; at the active scales, structured "events" reminiscent of traveling waves and heteroclinic cycles appear to dominate; while the strongly damped small scales display intermittent behavior. The separation of scales and their dynamics is invariant as the length of the system increases, providing additional support for the extensivity of the spatiotemporally complex dynamics claimed in earlier works. We show also that the dynamics are spatially localized, discuss various correlation lengths, and demonstrate the existence of a characteristic interaction length for instantaneous influences. Our results motivate and advance the search for localized, low-dimensional models that capture the full behavior of spatially extended chaotic partial differential equations. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...