Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 7320-7325 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Electrical conductivities (σdc) of the as-quenched Bi3.5Pb0.5Sr3Ca3Cu4Ox+zAg2O (with z=1, 3, 5, and 10 wt %) glassy precursors for high Tc superconductors are found to be much higher (∼10−5−101 Ω−1cm−1) than those of the corresponding Ag2O free Bi3.5Pb0.5Sr3Ca3Cu4Ox (denoted by BPB) precursor glass (∼10−13−10−6 Ω−1cm−1). This unusually high conductivity is attributed to the increase of carrier concentrations caused by the addition of Ag2O (also observed from the Hall effect measurements). The experimentally observed high values of σdc do not follow Mott's variable range hopping model which is in sharp contrast to the behavior of the corresponding pure BPB and many other conventional transition metal oxide glasses having high resistivities. Moreover, the Seebeck coefficients (S) of these glassy precursors show nonlinear variations (from negative at lower temperature to positive at higher temperature) which cannot be clearly explained by phonon drag or electron-phonon interaction. This behavior of S which is also supported from Hall effect measurement is considered to be due to the nonlinear thermal variations of carrier concentrations (both hole and electron) present in the glassy samples. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...