Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A low-energy, high-brightness, broad beam Cu ion source is used to study the effects of self-ion energy Ei on the deposition of epitaxial Cu films in ultrahigh vacuum. Atomically flat Ge(001) and Si(001) substrates are verified by in situ scanning tunneling microscopy (STM) prior to deposition of 300 nm Cu films with Ei ranging from 20 to 100 eV. Film microstructure, texture, and morphology are characterized using x-ray diffraction ω-rocking curves, pole figure analyses, and STM. Primary ion deposition produces significant improvements in both the surface morphology and mosaic spread of the films: At Ei〉37 eV the surface roughness decreases by nearly a factor of 2 relative to evaporated Cu films, and at Ei(approximately-equal-to)35 eV the mosaic spread of Cu films grown on Si substrates is only (approximately-equal-to)2°, nearly a factor of 2 smaller than that of evaporated Cu. During deposition with Ei(approximately-equal-to)25 eV on Ge substrates, the film coherently relaxes the 10% misfit strain by formation of a tilt boundary which is fourfold symmetric toward 〈111〉. The films have essentially bulk resistivity with ρ=1.9±0.1 μΩ cm at room temperature but the residual resistance at 10 K, ρ0, shows a broad maximum as a function of Ei, e.g., at Ei(approximately-equal-to)30 eV, ρ0=0.5 μΩ cm. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...