Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 8595-8604 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A two-variable Langmuir–Hinshelwood mechanism for isothermal CO oxidation on a catalytically active surface is presented. It shows bistability stemming from 2 cusp bifurcations, which can be obtained analytically for low pressure. Inclusion of CO diffusion on the surface leads to a system of partial differential equations, which exhibits nucleation and front propagation phenomena in the bistable region. While the line of equistability could with good accuracy be solved for analytically, the front velocities and critical radii for nucleation had to be determined numerically (using the method of heteroclinic orbits). Throughout the calculations the kinetics and rate constants for the CO oxidation on Pt(111) are used. Here the model can be reduced by adiabatic elimination of one variable (namely oxygen coverage) allowing a comparison to the exactly solved one-variable Schlögl model. Possible implications for future experimental work are briefly discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...