Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 1758-1767 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The CO fundamental vibration–rotation spectra resulting from the interaction of discharged nitrogen with carbon monoxide at low pressure (∼3 mTorr) exhibit bimodal rotational distributions. We have identified 14 vibrational levels of a rotationally relaxed (80 K) component and eight vibrational levels from a rotationally excited component. The eight rotationally excited bands are best reproduced by a statistical distribution E=ER+EV=3.7 eV, which provides sufficient population in the region of the Fortrat reversal (J∼90) to account for the observed R-branch bandhead formation. The rotationally relaxed vibrational levels are populated by single- and two-quantum transfer from N2(v), N2(v)+CO→N2(v−1,2)+CO(v=1,2), and radiative cascade from CO(A) produced by quenching of N2(a'), N2(a' 1Σ−u) +CO→N2(X,v)+CO(A 1Π)→CO(v≤9)+hν, and relaxation of the rotationally excited component. Kinetic and energetic arguments indicate that a branch of N2(a') quenching N2(a' 1Σ−u) +CO→N2(X,v)+CO(v≤14,J) is responsible for the rotationally excited component. Surprisal analysis indicates two dynamic mechanisms are responsible for the rotationally excited component. We have modeled the vibrational distribution of the rotationally excited component with equal contributions from a statistical (all v) process and a process favoring excitation of low vibrational levels (v≤4).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...